Kalender next 42tg

Montag Mai 20 - All Day
-i- UNO Weltbienentag 20.05

Event Kalender

April 2024
Mo Di Mi Do Fr Sa So
1 2 3 4 5 6 7
8 9 10 11 12 13 14
15 16 17 18 19 20 21
22 23 24 25 26 27 28
29 30 1 2 3 4 5

Banners

Unraveling a Mechanism of Honey Antibacterial Action: Polyphenol/H2O2-Induced Oxidative Effect on Bacterial Cell Growth and on DNA Degradation

Several compounds with antibacterial activities were identified in honey. However, a mechanism by which they lead to bacterial growth inhibition and bacterial death remains still unknown.

We recently found that honeys possess DNA degrading activity mediated by honey hydrogen peroxide and an unknown honey component(s). Here we provide evidence that active honeys (MIC90 of 6.25% to 12.5% v/v) possessed significantly higher levels of phenolics (p<0.02) of higher radical scavenging activities (p<0.005) than honeys of average activity.

Removal of H2O2 by catalase eliminated bacteriostatic activities caused by both phenolics and H2O2 suggesting that the growth inhibition resulted from the coupling chemistry between these compounds. Both phenolics and H2O2 were involved in DNA degradation by honeys. Treatment of plasmid DNA with H2O2 alone did not affect the DNA integrity but H2O2 removal from honey by catalase prevented DNA degradation. Polyphenols extracted from honeys degraded plasmid DNA in the presence of H2O2 and Cu (II) in the Fenton-type reaction. The extent of DNA degradation was inversely related to the polyphenol concentration in this system as well as in honeys. At low content, honey polyphenols exerted pro-oxidant activity damaging to DNA.

In conclusion, honey phenolics with pro-oxidant activities were necessary intermediates that conferred oxidative action of H2O2. Phenolic/H2O2-induced oxidative stress constituted the mechanism of honey bacteriostatic and DNA damaging activities.

Highlights 

A coupling chemistry between polyphenols and H2O2 was the mechanism underlying DNA degradation by honey. Honey polyphenols emerged as active intermediates that were necessary to confer oxidative action of hydrogen peroxide. The antioxidant/prooxidant properties of honey polyphenols play a critical role in bacterial DNA degradation.

Apitherapy News

Phänologie

UMFHA - Manuka
Official Unique Manuka Factor Honey Association (UMFHA)
More Links » JoelLipman.Com

aktualisierte Beiträge

Wetter

who is online

Aktuell sind 438 Gäste, 16 Bots und keine Mitglieder online


16 Bots:
9 x AhrefsBot
4 x bingbot
1 x YandexBot
1 x Googlebot
1 x DotBot